Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Containers Expo Blog, Microservices Expo, Open Source Cloud, Cognitive Computing , Agile Computing, @CloudExpo

Containers Expo Blog: Article

CIOs' Top Priority: Analytics and BI

How to Deal with the Data Integration Bottleneck

Whether as a driver for growth, a means to attract and retain customers, or a way to drive innovation and reduce costs, the business value of analytics and business intelligence has never been higher.

Gartner's Amplifying the Enterprise: The 2012 CIO Agenda as well as IBM's Global CIO Study 2011 confirm this point, with analytics and BI setting atop CIO's technology priorities in both reports.

Data Integration Is the Biggest Bottleneck
Providing analytics and BI solutions with the data required has always been difficult, with data integration long considered the biggest bottleneck in any analytics or BI project.

Complex data landscapes, diverse data types, new sources such as big data and the cloud are but a few of the well-known barriers.

For the past two decades, the default solution has been to first consolidate the data into a data warehouse, and then provide users with tools to analyze and report on this consolidated data.

However, data integration based on these traditional replication and consolidation approaches have numerous moving parts that must be synchronized. Doing this right extends lead times.

The Data Warehousing Institute confirms this lack of agility. Their recent study stated the average time needed to add a new data source to an existing BI application was 8.4 weeks in 2009, 7.4 weeks in 2010, and 7.8 weeks in 2011. And 33% of the organizations needed more than 3 months to add a new data source.

Data Virtualization Brings Agility to Analytics and BI
According to Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility, data virtualization significantly accelerates data integration agility. Key to this success has been data virtualization's ability to provide:

  • A more streamlined data integration approach
  • A more iterative development process
  • A more adaptable change management process

Using data virtualization as a complement to existing data integration approaches, the ten organizations profiled in the book cut analytics and BI project times in half or more.

This agility allowed the same teams to double their number of analytics and BI projects, significantly accelerating business benefits.

For more insights on data virtualization and business agility, check out my earlier articles on this topic.

Simplify to Overcome Historical IT Complexity

Data virtualization's simplified information access and faster time-to-solution is especially useful as an enabler for  more agile analytics and BI

Is Data Virtualization the Fast Path to BI Agility? describes how the architectures of most business intelligence systems are based on a complex chain of data stores starting with production databases, data staging areas, a data warehouse, dependent data marts, and personal data stores.   Simply maintaining this complexity is overwhelming IT today.

These classic BI architectures served business well for the last twenty years. However, considering the need for more agility, they have some disadvantages:

  • Duplication of data
  • Non-shared meta data specifications
  • Limited flexibility
  • Decrease of data quality
  • Limited support for operational reporting:
  • Limited support for reporting on unstructured and external data"

From a different point of view, SOA World's Zettabytes of Data and Beyond describes the challenges of force-fitting development methods that were appropriate for earlier times when less data complexity was the norm.

In addition, the proliferation of fit-for-purpose data stores including data warehouse appliances, Hadoop-based file systems, and a range of No-SQL data stores are breaking the hegemony of the traditional data warehouse as the "best" solution to the enterprise-level data integration problem.   The business and IT impact of these new approaches can be explored in the Virtualization Magazine article NoSQL and Data Virtualization - Soon to Be Best Friends.

Self-Service Analytics and BI are Important Too!
Responding to constantly changing business demands for analytics and BI is a daunting effort.

Mergers and acquisitions and evolving supply chains require new comparisons and aggregations. The explosion of social media drives demand for new customer insights. Mobile computing changes form factors. And self-service BI puts users in the driver's seat.

Business Taking Charge of Analytics and BI

In true Darwinian fashion, the business side of most organizations is now taking greater responsibility for fulfilling its own information needs rather than depending solely on already-burdened IT resources.

For example, in a 2011 survey of over 625 business and IT professionals entitled Self-Service Business Intelligence: TDWI Best Practices Report, @TDWI July 2011,The Data Warehousing Institute (TDWI) identified the following top five factors driving businesses toward self-service business intelligence:

  • Constantly changing business needs (65%)
  • IT's inability to satisfy new requests in a timely manner (57%)
  • The need to be a more analytics-driven organization (54%)
  • Slow and untimely access to information (47%)
  • Business user dissatisfaction with IT-delivered BI capabilities (34%)

In the same survey report, authors Claudia Imhoff and Colin White suggest that IT's focus shifts toward making it easier for business users "to access the growing number of dispersed data sources that exist in most organizations."

Examples Imhoff and White cite include:

  • providing friendlier business views of source data
  • improving on-demand access to data across multiple data sources
  • enabling data discovery and search functions
  • supporting access to other types of data, such as unstructured documents; and more.

Data Virtualization to the Self-Service Rescue

In the TDWI survey, 60% of respondents rated business views of source data as "very important," and 44% said on-demand access to multiple data sources using data federation technologies was "very important."

According to Imhoff and White, "Data virtualization and associated data federation technologies enable BI/DW builders to build shared business views of multiple data sources so that the users do not have to be concerned about the physical location or structure of the data.

These views are sometimes known as virtual business views because, from an application perspective, the data appears to be consolidated in a single logical data store. In fact, it may be managed in multiple physical data structures on several different servers.

Data virtualization platforms such as the Composite Data Virtualization Platform support access to different types of data sources, including relational databases, non-relational systems, application package databases, flat files, Web data feeds, and Web services.

To Achieve Self-Service BI, Consider Using Data Virtualization provides additional insights on about how data virtualization enables self-service analytics and BI.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

@ThingsExpo Stories
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution. In his session at @ThingsExpo, Akvelon expert and IoT industry leader Sergey Grebnov provided an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
As ridesharing competitors and enhanced services increase, notable changes are occurring in the transportation model. Despite the cost-effective means and flexibility of ridesharing, both drivers and users will need to be aware of the connected environment and how it will impact the ridesharing experience. In his session at @ThingsExpo, Timothy Evavold, Executive Director Automotive at Covisint, discussed key challenges and solutions to powering a ride sharing and/or multimodal model in the age ...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smart...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...