Welcome!

Weblogic Authors: Michael Bushong, Avi Rosenthal

Related Topics: Java, XML, Adobe Flex, AJAX & REA, Oracle, Apache

Java: Blog Feed Post

Debunking DRAM vs. Flash Controversy vis-a-vis In-Memory Processing

“Minimal” Performance Advantage of DRAM vs SSD

Wikibon produced an interesting material (looks like paid by Aerospike, NoSQL database recently emerged by resurrecting failed CitrusLeaf and acquihiring AlchemyDB, which product, of course, was recommended in the end) that compares NoSQL databases based on storing data in flash-based SSD vs. storing data in DRAM.

There are number of factual problems with that paper and I want to point them out.

Note that Wikibon doesn’t mention GridGain in this study (we are not a NoSQL datastore per-se after all) so I don’t have any bone in this game other than annoyance with biased and factually incorrect writing.

“Minimal” Performance Advantage of DRAM vs SSD
The paper starts with a simple statement “The minimal performance disadvantage of flash, relative to main memory…”. Minimal? I’ve seen number of studies where performance difference between SSDs and DRAM range form 100 to 10,000 times. For example, this University of California, Berkeley study claims that SSD bring almost no advantage to the Facebook Hadoop cluster and DRAM pre-caching is the way forward.

Let me provide even shorter explanation. Assuming we are dealing with Java – SSD devices are visible to Java application as typical block devices, and therefore accessed as such. It means that a typical object read from such device involves the same steps as reading this object from a file: hardware I/O subsystem, OS I/O subsystem, OS buffering, Java I/O subsystem & buffering, Java deserialization and induced GC. And… if you read the same object from DRAM – it involves few bytecode instructions – and that’s it.

Native C/C++ apps (like MongoDB) can take a slightly quicker route with memory mapped files (or various other IPC methods) – but the performance increase will not be significant (for obvious reason of needing to read/swap the entire pages vs. single object access pattern in DRAM).

Yet another recent technical explanation of the disadvantages of SSD storage can be found here (talking about Oracle’s “in-memory” strategy).

MongoDB, Cassandra, CouchDB DRAM-based?
Amid all the confusion on this topic it’s no wonder the author got it wrong. Neither MongoDB, Cassandra or CouchDB are in-memory systems. They are disk-based systems with support for memory caching. There’s nothing wrong with that and nothing new – every database developed in the last 25 years naturally provides in-memory caching to augment it’s main disk storage.

The fundamental difference here is that in-memory data systems like GridGain, SAP HAHA, GigaSpaces, GemFire, SqlFire, MemSQL, VoltDB, etc. use DRAM (memory) as the main storage medium and use disk for optional durability and overflow. This focus on RAM-based storage allows to completely re-optimized all main algorithms used in these systems.

For example, ACID implementation in GridGain that provides support for full-featured distributed ACID transactions beats every NoSQL database (EC-based) out there in read and even write performance: there are no single key limitations, no consistency trade offs to make, no application-side MVCC, no user-based conflict resolutions or other crutches – it just works the same way as it works in Oracle or DB2 – but faster.

2TB Cluster for $1.2M :)
If there was on piece in the original paper that was completely made up to fit the predefined narrative it was a price comparison. If the author thinks that 2TB RAM cluster costs $1.2M today – I have not one but two Golden Gate bridges to sell just for him…

Let’s see. A typical Dell/HP/IBM/Cisco blade with 256GB of DRAM will cost below $20K if you just buy on the list prices (Cisco seems to offer the best prices starting at around $15K for 256GB blades). That brings the total cost of 2TB cluster well below $200K (with all network and power equipment included and 100s TBs of disk storage).

Is this more expensive that SSD only cluster? Yes, by 2.5-3x times more expensive. But you are getting dramatic performance increase with the right software that more than justifies that price increase.

Conclusion
2-3x times price difference is nonetheless important and it provides our customers a very clear choice. If price is an issue and high performance is not – there are disk-based systems of wide varieties. If high performance and sub-second response on processing TBs of data is required – the hardware will be proportionally more expensive.

However, with 1GB of DRAM costing less than 1 USD and DRAM prices dropping 30% every 18 months – the era of disks (flash or spinning) is clearly coming to its logical end. It’s normal… it’s a progress and we all need to learn how to adapt.

Has anyone seen tape drives lately?

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.