Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IBM Cloud, Weblogic, Machine Learning

Java IoT: Article

Java Method Size

Getting around the 64K limit

The Java Virtual Machine specification limits the size of generated Java byte code for each method in a class to the maximum of 64K bytes. This limitation will cause the JVM to throw java.lang.VerifyError at runtime when the method size exceeds this limit.

This method size restriction of the JVM seems to be too stringent. A bug is open with the Oracle Java development team (http://bugs.sun.com/view_bug.do?bug_id=4262078). This bug is taken as an enhancement request which is likely to be fixed in the future java versions. That said, the fix for this issue is rather supportive. Application/Container developers need to consider few factors and apply good programming/refactoring techniques to get around this problem. While future versions of JVM might increase the method size limit to a considerable extent, a the size will always be a finite value.

In this article, I discuss some of the techniques that can be used to get around this problem. The techniques/suggestions discussed here, while apply to development environments also, are primarily targeted for containers which involve code generation as part of compilation process (e.g., EJB container or a JSP container).

Applications and Method Size Limit
While applications written in Java seldom encounter this issue, even more so after the above noted bug is fixed, it is recommended to follow the proven software engineering principles like code refactoring and object oriented programming techniques.

The complexity of this issue in application development is relatively smaller. As the code is written through the development phase, a number of tests are run both at the Unit level as well as the system level. Also, it is very rare that the application development involves complex code generation during the build time. This gives the developer/architect an opportunity to identify the possible method size restriction issue well ahead of the final delivery.

Application Containers and Method Size Limit
Application Containers are environments where Java applications execute. So they carry very high degree of complexity in terms of code. As the containers consume the application code and configuration and provide services for the application runtime, containers most often involve code generation. This code generation can be very complex in systems like JSP compiler as they convert scripting languages to Java.

This makes containers involving code generation particularly vulnerable to the Java method size limit restriction.

Techniques for Resolving the Method Size Restriction
In this section, I detail some of the techniques which can be used in code generation area to cover most of the use cases which cause the method size restriction.

Splitting a Big Method into Smaller Pieces
This is one of the structured programming techniques which can be used with effect. The driving factor for this technique should be the code refactoring. After the code generation is completed, a careful examination of the bigger methods can give us some clue of moving some of the java statements to a different private method. This is typically reverse engineering the output to a fine grained control.

Using a Intermediate Super Class
This applies particularly to areas such as EJB and JSP. A JSP file once converted into a Java class will typically extend a JspServlet class (implemented differently by different container vendors). The core refactoring technique here is to move the rudimentary code into the super class so that the generated class becomes light. However, this technique is fairly primitive. Most modern container vendors have already optimized their code to include almost everything possible into their super class implementation.

Using Helper Class/Methods
The third refactoring technique is to use a helper class. One particular use case is a JSP compiler handling a %@include...% directive. JSP specification mandates that the static includes need to be expanded inline in the generated service method. This adds to the size of the generated service method. One refactoring that can be used here is to move the expanded code into a private member function in the generated Java file and include just the method call in the service method.

Another area is the scripting elements in the JSP file. All the scripting elements are parsed and then included inline in the generated service() method of the java file. A similar refactoring technique discussed above can be used for the scripting elements as well.

Code generation engines can consider generating a Helper class which contains all the refactored methods and shield the Helper class from end-user's direct access.

Using JVM Switches
Java compilers generate .class files, with each file containing bytecodes for the methods in one class. These files contain a series of sections, or attributes, and it's possible to exercise some control over which sections actually show up in a .class file. The Code attribute contains actual bytecodes for methods, SourceFile information on the source file name used to generate this .class file, LineNumberTable mapping information between bytecode offsets and source file line numbers, and LocalVariableTable mapping information between stack frame offsets and local variable names.

We can use options to the javac compiler to control which sections are included:

javac Code, SourceFile, LineNumberTable
javac -g Code, SourceFile, LineNumberTable, LocalVariableTable
javac -g:none Code

How much do these options affect code size? A test using the JDK 1.2.2 sources in the java.io, java.lang, and java.util packages was run, with total sizes of all .class files as follows:

javac 668K
javac -g 815K
javac -g:none 550K

So use of javac -g:none saves about 20% in space over the default javac, and using javac -g is about 20% larger than the default. There are also commercial tools that tackle this particular problem.

If you strip out information such as line numbers from .class files, you may have problems with debugging and exception reporting. So it is recommended that the container vendors provide a configuration mechanism to switch off/on this feature so the production environments can take advantage.

Conclusion
Any refactoring technique will not completely alleviate the method size restriction. Excessive template text and scripting elements in the scripting languages will almost always cause the compilers to generate heavier methods and may lead to the method size restriction. The solution to this problem is supportive. Developers need to concentrate on good programming techniques so that the scripting language code like JSP will be more maintainable. JSP specification recommends using tag libraries that promote reusability while considerably reducing the size of the generated service method.

More Stories By Shankar Itchapurapu

Shankar Itchapurapu is a software engineer at Oracle in India. He holds a Master's degree in Computer Applications. You can e-mail Shankar at [email protected]

IoT & Smart Cities Stories
The platform combines the strengths of Singtel's extensive, intelligent network capabilities with Microsoft's cloud expertise to create a unique solution that sets new standards for IoT applications," said Mr Diomedes Kastanis, Head of IoT at Singtel. "Our solution provides speed, transparency and flexibility, paving the way for a more pervasive use of IoT to accelerate enterprises' digitalisation efforts. AI-powered intelligent connectivity over Microsoft Azure will be the fastest connected pat...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
Codete accelerates their clients growth through technological expertise and experience. Codite team works with organizations to meet the challenges that digitalization presents. Their clients include digital start-ups as well as established enterprises in the IT industry. To stay competitive in a highly innovative IT industry, strong R&D departments and bold spin-off initiatives is a must. Codete Data Science and Software Architects teams help corporate clients to stay up to date with the mod...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Druva is the global leader in Cloud Data Protection and Management, delivering the industry's first data management-as-a-service solution that aggregates data from endpoints, servers and cloud applications and leverages the public cloud to offer a single pane of glass to enable data protection, governance and intelligence-dramatically increasing the availability and visibility of business critical information, while reducing the risk, cost and complexity of managing and protecting it. Druva's...
BMC has unmatched experience in IT management, supporting 92 of the Forbes Global 100, and earning recognition as an ITSM Gartner Magic Quadrant Leader for five years running. Our solutions offer speed, agility, and efficiency to tackle business challenges in the areas of service management, automation, operations, and the mainframe.
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
DSR is a supplier of project management, consultancy services and IT solutions that increase effectiveness of a company's operations in the production sector. The company combines in-depth knowledge of international companies with expert knowledge utilising IT tools that support manufacturing and distribution processes. DSR ensures optimization and integration of internal processes which is necessary for companies to grow rapidly. The rapid growth is possible thanks, to specialized services an...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...