Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Blog Feed Post

Controlling Physical Devices on the Real Time Web: Kaazing IoT Talk at JavaOne 2013

Two visionary Kaazing engineers, David Witherspoon and Prashant Khanal, gave an exciting presentation at JavaOne this year: JMS, WebSocket, and the Internet of Things — Controlling Physical Devices on the Real Time Web.

DSC_1196

David and Prashant led the audience through the steps of building connected Things by combining open source hardware, a Raspberry Pi, with real-time Web communication and messaging, powered by Kaazing.

They started off by demonstrating Kaazing’s remote controlled truck. A remote member of the team joined the presentation over Skype and used a Web browser on his smart phone to control the truck in the conference room.

IMG_6014

Next, they walked the audience through building similar M2M systems. David and Prashant used the simplest “machines” for their demonstrations: a light bulb and a switch, each connected to a Raspberry Pi. All it took was three basic steps.

DSC_1197

1. Connecting Hardware with Software – the Magic of the Raspberry Pi

The software stack installed on the two Raspberry Pis:

This step consisted of two sub-steps. First, Prashant and David demonstrated how to leverage software running on the Pi to turn the light on/off. Then, they showed how the Raspberry Pi can detect the on/off state changes of the switch. It’s important to note that in this step, a switch was connected to a Pi and a lightbulb was connected to another Pi; the switch and the lightbulb (the two Things) are not yet connected.

Watch David demonstrate how software controls the two hardware pieces, the light and the switch.

Source Code for the Light

light

package com.kaaazing.demo.light;

import com.pi4j.io.gpio.GpioController;
import com.pi4j.io.gpio.GpioFactory;
import com.pi4j.io.gpio.GpioPinDigitalOutput;
import com.pi4j.io.gpio.PinState;
import com.pi4j.io.gpio.RaspiPin;

public class Light {

	private final GpioController gpio;
	private final GpioPinDigitalOutput gpioPin;

	public Light() {
		gpio = GpioFactory.getInstance();
		gpioPin = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_01,
				"MyLight", PinState.LOW);
	}

	public void on() {
		gpioPin.high();
		System.out.println("Light on");
	}

	public void off() {
		gpioPin.low();
		System.out.println("Light off");
	}

	public void shutdown() {
		gpio.shutdown();
	}

	public static void main(String[] args) {
		Light lightController = new Light();
		System.out.println("Light controller initialized");
		try {
			Thread.sleep(2000);
			lightController.on();
			Thread.sleep(2000);
			lightController.off();
			Thread.sleep(2000);
			lightController.on();
			Thread.sleep(2000);
			lightController.off();
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {
			lightController.shutdown();
		}
	}

}

First, in lines 16-17 a General Purpose I/O (GPIO) output pin is initialized. Then, in the on() and off() methods we set its value to high (line 21) and low (line 26). Eventually, we invoke the on() and off() methods.

Note: For the entire source code, scroll to the bottom of this post.

Source Code for the Switch

switch

package com.kaaazing.demo.toggle;

import java.util.concurrent.CopyOnWriteArrayList;

import com.pi4j.io.gpio.GpioController;
import com.pi4j.io.gpio.GpioFactory;
import com.pi4j.io.gpio.GpioPinDigitalInput;
import com.pi4j.io.gpio.PinPullResistance;
import com.pi4j.io.gpio.PinState;
import com.pi4j.io.gpio.RaspiPin;
import com.pi4j.io.gpio.event.GpioPinDigitalStateChangeEvent;
import com.pi4j.io.gpio.event.GpioPinListenerDigital;

public class Toggle {
	private final GpioController gpio;
	private final GpioPinDigitalInput gpioPin;
	private final CopyOnWriteArrayList listeners;

	public Toggle() {
		listeners = new CopyOnWriteArrayList();

		gpio = GpioFactory.getInstance();
		gpioPin = gpio.provisionDigitalInputPin(RaspiPin.GPIO_00,
				PinPullResistance.PULL_DOWN);
		gpioPin.addListener(new GpioPinListenerDigital() {

			@Override
			public void handleGpioPinDigitalStateChangeEvent(
					GpioPinDigitalStateChangeEvent event) {
				notifyListeners(event.getState());
			}
		});
	}

	private void notifyListeners(PinState state) {
		if (state == PinState.HIGH) {
			System.out.println("Toggle on");
		} else {
			System.out.println("Toggle off");
		}

		for (ToggleListener listener : listeners) {
			if (state == PinState.HIGH) {
				listener.on();
			} else {
				listener.off();
			}
		}
	}

	public void registerListener(ToggleListener listener) {
		listeners.add(listener);
		// send initial state
		if (gpioPin.getState() == PinState.HIGH) {
			listener.on();
		} else {
			listener.off();
		}
	}

	public void shutdown() {
		gpio.shutdown();
	}

	public static void main(String[] args) {
		Toggle toggle = new Toggle();
		System.out.println("Running toggle for 20 seconds");
		try {
			Thread.sleep(20000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {
			toggle.shutdown();
		}
		System.out.println("Exiting");
	}
}

 

package com.kaaazing.demo.toggle;

public interface ToggleListener {
	public void on();
	public void off();
}

For the switch, first we initialize an input pin, and then write the listener code waiting for the toggle event.

Note: For the entire source code, scroll to the bottom of this post.

2. Pub-Sub Messaging to Build a Loosely Coupled System – Introducing the Message Broker

Next, David and Prashant demonstrated how to connect the lightbulb and its Pi with the switch and its Pi. While it’s easy enough to connect the switch and the lightbulb directly, they wanted to show the power of the publish-subscribe (pub-sub) messaging model, which lets you build a real-life system. By using a pub-sub model, one Thing can send a message to another Thing via a message broker to send signals to each Thing. To illustrate this, David and Prashant used the open source Apache ActiveMQ JMS message broker that ships pre-packaged with the JMS Edition of Kaazing WebSocket Gateway, but you can use a variety of JMS message brokers to achieve the same result. Kaazing WebSocket Gateway integrates with a number of different JMS message brokers, including TIBCO Enterprise Message Service, Informatica Ultra Messaging, IBM WebSphere MQ, JBoss Messaging, Open MQ Messaging, and Oracle WebLogic JMS.

In this case, the Pi attached to the switch is the publisher, and the Pi attached to the light is the subscriber.

message-broker

Watch David demonstrate the connected scenario.

Source Code for the Light

package com.kaaazing.demo.light;

import java.net.URI;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;

import com.kaaazing.demo.util.AbstractJmsMessenger;
import com.kaaazing.demo.util.DefaultExceptionListener;

public class LightJmsTcpController extends AbstractJmsMessenger {

    private final ActiveMQConnectionFactory connectionFactory;
    private final Connection connection;
    private final Session session;
    private final Topic topic;
    private final MessageConsumer consumer;
    private final Light light;
    private boolean running = true;

    public LightJmsTcpController() {
        try {
            light = new Light();

            connectionFactory = new ActiveMQConnectionFactory(URI.create("tcp://"
                    + BROKER_HOSTNAME + ":61616"));
            connection = connectionFactory.createConnection();
            connection.setExceptionListener(new DefaultExceptionListener());
            session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
            topic = session.createTopic(LIGHT_TOPIC);
            consumer = session.createConsumer(topic);
            consumer.setMessageListener(new MessageListener() {

                @Override
                public void onMessage(Message message) {
                    try {
                        TextMessage textMessage = (TextMessage) message;
                        String messageData = textMessage.getText();
                        System.out.println("message received: " + messageData);
                        if (messageData.equals(ON_MESSAGE)) {
                            light.on();
                        } else if (messageData.equals(OFF_MESSAGE)) {
                            light.off();
                        } else if (messageData.equals(SHUTDOWN)) {
                            System.out.println("shutting down");
                            shutdown();
                        }
                    } catch (JMSException e) {
                        e.printStackTrace();
                        shutdown();
                    }
                }
            });

            connection.start();
            System.out.println("Light initialized");
        } catch (JMSException e) {
            shutdown();
            throw new RuntimeException(e.getMessage());
        }
    }

    private void shutdown() {
        running = false;
        if (light != null) {
            light.shutdown();
        }
        if (connection != null) {
            try {
                System.out.println("Cleaning up resources");
                connection.close();
            } catch (JMSException e) {
                throw new RuntimeException(e.getMessage());
            }
        }
    }

    public static void main(String[] args) throws JMSException, InterruptedException {
        LightJmsTcpController lightController = new LightJmsTcpController();
        while (lightController.isRunning()) {
            Thread.sleep(1000);
        }
        System.out.println("Exiting Application");

    }

    public boolean isRunning() {
        return running;
    }

}

In this demo first we create an instance of the Light class (line 31), then a TCP connection to ActiveMQ (lines 33-35). Then, we create a JMS session (line 37), a topic (line 38), and a consumer (line 39), and define the message listener (line 40) that’s invoked when a new message arrives. Depending on the message, the light is turned on or off (lines 48-55).

Note: For the entire source code, scroll to the bottom of this post.

Source Code for the Switch

package com.kaaazing.demo.toggle;

import java.net.URI;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;

import com.kaaazing.demo.util.AbstractJmsMessenger;
import com.kaaazing.demo.util.DefaultExceptionListener;

public class ToggleJmsTcpListener extends AbstractJmsMessenger implements
        ToggleListener {

    private final ActiveMQConnectionFactory connectionFactory;
    private final Connection connection;
    private final Session session;
    private final Topic topic;
    private final MessageProducer producer;
    private final Toggle toggle;
    private final MessageConsumer consumer;
    private boolean running = true;

    public ToggleJmsTcpListener() {

        try {
            toggle = new Toggle();

            connectionFactory = new ActiveMQConnectionFactory(URI.create("tcp://"
                    + BROKER_HOSTNAME + ":61616"));
            connection = connectionFactory.createConnection();
            connection.setExceptionListener(new DefaultExceptionListener());
            session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
            topic = session.createTopic(LIGHT_TOPIC);
            producer = session.createProducer(topic);

            // clean shutdown listener
            consumer = session.createConsumer(topic);
            consumer.setMessageListener(new MessageListener() {
                @Override
                public void onMessage(Message message) {
                    try {
                        TextMessage textMessage = (TextMessage) message;
                        String messageData = textMessage.getText();
                        if (messageData.equals(SHUTDOWN)) {
                            System.out.println("shutting down");
                            shutdown();
                        }
                    } catch (JMSException e) {
                        e.printStackTrace();
                        shutdown();
                    }
                }
            });

            connection.start();
            System.out.println("Toggle initialized");
            toggle.registerListener(this);

        } catch (JMSException e) {
            shutdown();
            throw new RuntimeException(e.getMessage());
        }
    }

    @Override
    public void on() {
        try {
            System.out.println("Sending on message");
            producer.send(session.createTextMessage(ON_MESSAGE));
        } catch (JMSException e) {
            e.printStackTrace();
            shutdown();
        }
    }

    @Override
    public void off() {
        try {
            System.out.println("Sending off message");
            producer.send(session.createTextMessage(OFF_MESSAGE));
        } catch (JMSException e) {
            e.printStackTrace();
            shutdown();
        }
    }

    private void shutdown() {
        running = false;
        if (toggle != null) {
            toggle.shutdown();
        }
        if (connection != null) {
            try {
                System.out.println("Cleaning up resources");
                connection.close();
            } catch (JMSException e) {
                throw new RuntimeException(e.getMessage());
            }
        }
    }

    public static void main(String[] args) throws JMSException,
            InterruptedException {
        ToggleJmsTcpListener toggleJmsTcpListener = new ToggleJmsTcpListener();
        while (toggleJmsTcpListener.isRunning()) {
            Thread.sleep(1000);
        }
        System.out.println("Exiting Application");
    }

    public boolean isRunning() {
        return running;
    }

}

Similar to the lightbulb, for the switch we create a TCP connection to ActivemMQ (line 37-39). After creating the JMS session (line 41), a topic (line 42), we create a JMS message producer (line 43). When the switch is toggled, we create and send a text message (lines 78 and 89) on the topic.

Note: For the entire source code, scroll to the bottom of this post.

3. Extending the Reach to the Web – WebSocket Transport with Kaazing WebSocket Gateway

The challenge with a TCP-based system, like the one outlined in Step 2, is that TCP has difficulty connecting isolated networks. To use TCP connections, you must open ports on firewalls and address the challenges of penetrating network intermediaries. Also, connectivity with mobile and Web applications raises issues. If you want to build a truly global system, you must ensure that your Things are always connected, no matter what.

The good news is that you can very easily extend your JMS-based applications to the Web, simply by introducing Kaazing WebSocket Gateway in the picture. With Kaazing, you can connect your devices in a secure fashion with low latency using open industry standard Web communication: HTML5 WebSocket.

WebSocket is a natural choice for asynchronous scenarios with event-driven architecture, such as the switch and the light. As the switch is toggled (event), the light (subscriber) is notified of the event asynchronously (without explicitly polling). It’s easy to see that using traditional synchronous Web programming models, like REST, don’t fit the bill as well as the asynchronous pattern that WebSocket supports.

For connected devices, reliability is critical. The moment a connection is lost due to network disruption or other errors, the Kaazing client will automatically try to restore that connection. The Kaazing client libraries will also re-subscribe to any active subscriptions prior to the connection failure.

In this demo, the switch and its Pi can be in Spokane, WA, while the light and its Pi can reside in Kathmandu, Nepal. As long as they’re connected to the public Internet, the JMS messages can traverse the Web, and the switch can control the light.

message-broker-kaazing

Watch David demonstrate the WebSocket connected scenario.

Source Code for the Light

package com.kaaazing.demo.light;

import java.net.URI;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import com.kaaazing.demo.util.AbstractJmsMessenger;
import com.kaaazing.demo.util.DefaultExceptionListener;
import com.kaazing.gateway.jms.client.stomp.StompConnectionFactory;

public class LightJmsWsController extends AbstractJmsMessenger {

	private final StompConnectionFactory connectionFactory;
	private final Connection connection;
	private final Session session;
	private final Topic topic;
	private final MessageConsumer consumer;
	private final Light light;
	private boolean running = true;

	public LightJmsWsController() {
		try {
			light = new Light();

			connectionFactory = new StompConnectionFactory(URI.create("ws://"
					+ GATEWAY_HOST + "/jms"));
			connection = connectionFactory.createConnection();
			connection.setExceptionListener(new DefaultExceptionListener());
			session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
			topic = session.createTopic(LIGHT_TOPIC_WS);
			consumer = session.createConsumer(topic);
			consumer.setMessageListener(new MessageListener() {

				@Override
				public void onMessage(Message message) {
					try {
						TextMessage textMessage = (TextMessage) message;
						String messageData = textMessage.getText();
						System.out.println("websocket message received: " + messageData);
						if (messageData.equals(ON_MESSAGE)) {
							light.on();
						} else if (messageData.equals(OFF_MESSAGE)) {
							light.off();
						} else if (messageData.equals(SHUTDOWN)) {
							System.out.println("shutting down");
							shutdown();
						}
					} catch (JMSException e) {
						e.printStackTrace();
						shutdown();
					}
				}
			});

			connection.start();
			System.out.println("Light initialized");
		} catch (JMSException e) {
			shutdown();
			e.printStackTrace();
			throw new RuntimeException(e.getMessage());
		}
	}

	private void shutdown() {
		running = false;
		if (light != null) {
			light.shutdown();
		}
		if (connection != null) {
			try {
				System.out.println("Cleaning up resources");
				connection.close();
			} catch (JMSException e) {
				throw new RuntimeException(e.getMessage());
			}
		}
	}

	public static void main(String[] args) throws JMSException,
			InterruptedException {
		LightJmsWsController lightController = new LightJmsWsController();
		while (lightController.isRunning()) {
			Thread.sleep(1000);
		}
		System.out.println("Exiting Application");

	}

	public boolean isRunning() {
		return running;
	}

}

Notice that when switching from TCP to WebSocket, the only change you have to make to your code is replace the connection factory class, the protocol, and the port number.

Note: For the entire source code, scroll to the bottom of this post.

Source Code for the Switch

package com.kaaazing.demo.toggle;

import java.net.URI;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import com.kaaazing.demo.util.AbstractJmsMessenger;
import com.kaaazing.demo.util.DefaultExceptionListener;
import com.kaazing.gateway.jms.client.stomp.StompConnectionFactory;

public class ToggleJmsWsListener extends AbstractJmsMessenger implements
        ToggleListener {

    private final StompConnectionFactory connectionFactory;
    private final Connection connection;
    private final Session session;
    private final Topic topic;
    private final MessageProducer producer;
    private final Toggle toggle;
    private final MessageConsumer consumer;
    private boolean running = true;

    public ToggleJmsWsListener() {

        try {
            toggle = new Toggle();
			connectionFactory = new StompConnectionFactory(URI.create("ws://"
                    + GATEWAY_HOST + "/jms"));
            connection = connectionFactory.createConnection();
            connection.setExceptionListener(new DefaultExceptionListener());
            session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
            topic = session.createTopic(LIGHT_TOPIC_WS);
            producer = session.createProducer(topic);

            // clean shutdown listener
            consumer = session.createConsumer(topic);
            consumer.setMessageListener(new MessageListener() {
                @Override
                public void onMessage(Message message) {
                    try {
                        TextMessage textMessage = (TextMessage) message;
                        String messageData = textMessage.getText();
                        if (messageData.equals(SHUTDOWN)) {
                            System.out.println("shutting down");
                            shutdown();
                        }
                    } catch (JMSException e) {
                        e.printStackTrace();
                        shutdown();
                    }
                }
            });

            connection.start();
            System.out.println("Toggle initialized");
            toggle.registerListener(this);

        } catch (JMSException e) {
            shutdown();
            e.printStackTrace();
            throw new RuntimeException(e.getMessage());
        }
    }

    @Override
    public void on() {
        try {
            System.out.println("Sending websocket on message");
            producer.send(session.createTextMessage(ON_MESSAGE));
        } catch (JMSException e) {
            e.printStackTrace();
            shutdown();
        }
    }

    @Override
    public void off() {
        try {
            System.out.println("Sending websocket off message");
            producer.send(session.createTextMessage(OFF_MESSAGE));
        } catch (JMSException e) {
            e.printStackTrace();
            shutdown();
        }
    }

    private void shutdown() {
        running = false;
        if (toggle != null) {
            toggle.shutdown();
        }
        if (connection != null) {
            try {
                System.out.println("Cleaning up resources");
                connection.close();
            } catch (JMSException e) {
                throw new RuntimeException(e.getMessage());
            }
        }
    }

    public static void main(String[] args) throws JMSException,
            InterruptedException {
        ToggleJmsWsListener toggleJmsWsListener = new ToggleJmsWsListener();
        while (toggleJmsWsListener.isRunning()) {
            Thread.sleep(1000);
        }
        System.out.println("Exiting Application");
    }

    public boolean isRunning() {
        return running;
    }

}

Interestingly, the source code used for the WebSocket-enabled scenario is almost identical to the one used in Step 2. As the highlighted code snippet indicates (lines 35-36), all you need to change is the connection information: simply modify the connection factory, the protocol, and the port number.

Note: For the entire source code, scroll to the bottom of this post.

To keep the audience engaged (and to emphasize the “color” of the WebSocket server used for the demos – Kaazing’s color is orange), for the WebSocket demo Prashant replaced the white light bulb with an orange one.

DSC_1202

Slides

You can also review the entire deck as presented at JavaOne.

Source Code & Download

The entire source code for the demonstration is published under David’s GitHub account. Star it, fork it, tweet it!

You can also download a free, fully functional version of the Kaazing WebSocket Gateway – JMS Edition that we used. To learn more, check out these resources:

Finally, you can meet David and Prashant in person and learn more about Kaazing and our platform at the upcoming HTML5DevConf (22-23 October at Moscone North in San Francisco, CA).

Tell us about your Raspberry Pi project – and drop a comment if you’re (interested in) building Internet (or Web) of Things applications.


Read the original blog entry...

More Stories By Kaazing Blog

Kaazing is helping define the future of the event-driven enterprise by accelerating the Web for the Internet of Things.

@ThingsExpo Stories
SYS-CON Events announced today that Avere Systems, a leading provider of hybrid cloud enablement solutions, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Avere Systems was created by file systems experts determined to reinvent storage by changing the way enterprises thought about and bought storage resources. With decades of experience behind the company’s founders, Avere got its ...
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, will discuss how by using...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
SYS-CON Events announced today that CAST Software will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CAST was founded more than 25 years ago to make the invisible visible. Built around the idea that even the best analytics on the market still leave blind spots for technical teams looking to deliver better software and prevent outages, CAST provides the software intelligence that matter ...
SYS-CON Events announced today that Daiya Industry will exhibit at the Japanese Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ruby Development Inc. builds new services in short period of time and provides a continuous support of those services based on Ruby on Rails. For more information, please visit https://github.com/RubyDevInc.
As businesses evolve, they need technology that is simple to help them succeed today and flexible enough to help them build for tomorrow. Chrome is fit for the workplace of the future — providing a secure, consistent user experience across a range of devices that can be used anywhere. In her session at 21st Cloud Expo, Vidya Nagarajan, a Senior Product Manager at Google, will take a look at various options as to how ChromeOS can be leveraged to interact with people on the devices, and formats th...
SYS-CON Events announced today that Yuasa System will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Yuasa System is introducing a multi-purpose endurance testing system for flexible displays, OLED devices, flexible substrates, flat cables, and films in smartphones, wearables, automobiles, and healthcare.
SYS-CON Events announced today that Taica will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Taica manufacturers Alpha-GEL brand silicone components and materials, which maintain outstanding performance over a wide temperature range -40C to +200C. For more information, visit http://www.taica.co.jp/english/.
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities – ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups. As a result, many firms employ new business models that place enormous impor...
SYS-CON Events announced today that SourceForge has been named “Media Sponsor” of SYS-CON's 21st International Cloud Expo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. SourceForge is the largest, most trusted destination for Open Source Software development, collaboration, discovery and download on the web serving over 32 million viewers, 150 million downloads and over 460,000 active development projects each and every month.
SYS-CON Events announced today that Dasher Technologies will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Dasher Technologies, Inc. ® is a premier IT solution provider that delivers expert technical resources along with trusted account executives to architect and deliver complete IT solutions and services to help our clients execute their goals, plans and objectives. Since 1999, we'v...
As popularity of the smart home is growing and continues to go mainstream, technological factors play a greater role. The IoT protocol houses the interoperability battery consumption, security, and configuration of a smart home device, and it can be difficult for companies to choose the right kind for their product. For both DIY and professionally installed smart homes, developers need to consider each of these elements for their product to be successful in the market and current smart homes.
SYS-CON Events announced today that MIRAI Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MIRAI Inc. are IT consultants from the public sector whose mission is to solve social issues by technology and innovation and to create a meaningful future for people.
SYS-CON Events announced today that Massive Networks, that helps your business operate seamlessly with fast, reliable, and secure internet and network solutions, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. As a premier telecommunications provider, Massive Networks is headquartered out of Louisville, Colorado. With years of experience under their belt, their team of...
SYS-CON Events announced today that TidalScale, a leading provider of systems and services, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. TidalScale has been involved in shaping the computing landscape. They've designed, developed and deployed some of the most important and successful systems and services in the history of the computing industry - internet, Ethernet, operating s...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, will discuss how from store operations...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, will lead you through the exciting evolution of the cloud. He'll look at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering ...