Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Java IoT

Java IoT: Article

Implementing Design Patterns in Java

Implementing Design Patterns in Java

The process of designing reusable object-oriented software is one of the hardest problems faced by object-oriented software designers. This is mainly due to the fact that different software architectures have different requirements. However, design patterns give the software designer the ability to reuse some successful designs that have been used in other projects and have proved to be successful. Thus, design patterns help software designers design successful new software by using prior successful designs as a basis for their new design.

Design Patterns are one of the most significant areas of emergence in object-oriented technology. Object-oriented software designers do not invent design patterns, but rather they discover them through experience. The usefulness of a design pattern won't be seen until it has been used and proven to be successful.

Because there are many design patterns out there, the authors of the Design Patterns[1] book classify patterns by two criteria, purpose and scope. The purpose criteria reflect what a pattern does. The scope criteria specify whether the pattern applies to classes or objects. Furthermore, the authors of the Design Patterns book organized three purposes for patterns: Creational, Structural or Behavioral. Creational patterns are concerned with the process of object creation. Structural patterns are concerned with the composition of classes or objects. Behavioral patterns specify the ways in which classes and objects interact and assign responsibilities.

Java Features
When using design patterns, solutions are expressed in objects and interfaces. Interfaces, Abstract Classes and Inheritance play a major role in implementing design patterns. The following is a review of these terms in Java.

An interface in Java consists of a series of declarations that are subject to two restrictions:
1. Method declarations (if any) must not include implementation code.
2. Variable declarations (if any) can have only constant initializers; that is variables declared static final.

For example, in the following interface:

interface Point {
void move(int x, int y);

Point is the name of the interface and move is a method declared inside the Point interface. Note that every interface is implicitly abstract, so the use of the abstract modifier is obsolete. Also, note that every field declaration in the body of an interface is implicitly public, static and final. Thus, it is redundant to specify any of these modifiers for such fields.

An interface in Java is used to identify a common set of methods and constants for the group of classes that implement the interface.

The interface(s) implemented by a class are identified in the "implements" clause of the class declaration. For example, the following class implements the Point interface declared above:

class Test implements Point {
void move(int x, int y) {
// implementation code goes here

Abstract Classes
An abstract class is a class that defines common behavior and has no direct instances; however, its descendant classes (known as concrete classes) have direct instances. Abstract classes may have abstract methods; that is, methods that are declared but not yet implemented. Thus, a class has abstract methods if any of the following conditions are valid:
1. It explicitly contains a declaration of an abstract method.
2. It inherits an abstract method from its direct superclass.
3. A direct superinterface of the class declares or inherits a method and that class does not contain a method that implements it.

Abstract classes should not be mixed with final classes in Java. A class is declared final if no subclasses are desired or required. Also note that if a class is declared final it cannot be declared abstract as well; otherwise, a compile-time error occurs.

As an example of an abstract class consider the following Employee class:

abstract class Employee {
abstract double compute_pay();
The abstract class Employee declares an abstract method, compute_pay. This concrete method defines only the form of the method without implementation; thus, each subclass must provide its own implementation.

NOTE: The abstract base class, Employee, could be coded as an interface. Using an interface instead of an abstract class might look cleaner since you don't have all those abstract keywords lying around.

In object-oriented languages, objects are defined in terms of classes, and classes can be defined in terms of other classes. For example, cars, trucks, buses and sport cars are all examples of vehicles. Classes can be organized into a hierarchy. A subclass inherits attributes from a superclass at a higher level in the tree. These attributes include state and behavior. Subclasses can add more variables and methods to the ones they inherit from the superclass; they can also override inherited methods by providing specialized implementations for those methods.

Classes in Java can have only one superclass. That is, Java has support for single inheritance but not multiple inheritance; however, note that a class may implement multiple interfaces.

As an example, Employees can be categorized in more than one class: consultants (hourly rate) and permanent employees (salary rate) for example. Thus, we can inherit from the Employee abstract class above as shown in Listing 1.

Figure 1 shows a class diagram representing this inheritance relationship.

Note about the figures: The figures were drawn with the Booch method's notation in mind. If a class has a small triangle with an "A" inside it, this means that the corresponding class is an Abstract Class.

The following sections describe a case study using Java features (Interfaces, Abstract Classes, Inheritance, etc.) and object-oriented techniques (Design Patterns) to build extensible software.

The case study that we will consider is a graphics editor. The editor permits recursive groups of shapes to be constructed from circles, rectangles and triangles. Shapes that are not part of a group are root items and are available for manipulation. Constructing increasingly complex elements (groups of shapes) out of simple ones (shapes) is a technique called recursive composition. Note that we will not exploit all the patterns in this example. You may want to do that yourself as an exercise.

A Factory is an example of Creational Patterns. These patterns provide different ways to remove explicit references to concrete classes for code that needs to instantiate them. A class creational pattern class inheritance varies the class that is instantiated, while an object creational pattern delegates instantiation to another object. This is explained below through an example.

The shapes that our graphics editor will be capable of manipulating include circles, rectangles and triangles. Note that there is a common behavior with these shapes - all of them can be drawn, moved across the screen and erased. Thus, we can define Shape as an abstract class for all graphic elements that can appear in the graphics editor window. Its subclasses define primitive graphical elements such as circles, triangles and rectangles. Figure 2 depicts a representative part of the Shapes class hierarchy. The definition of the abstract Shape class looks like Listing 2.

NOTE: Shape can be an interface instead of an abstract class.

Note that the abstract class, Shape, cannot be instantiated. Thus, an attempt like

Shape shape = new Shape();

results in a compile-time error because abstract classes are not instantiable.

Abstract Factory
The abstract class, Shape, declared in Listing 2, is an example of the Abstract Factory Pattern. It declares an interface for creating each basic kind of shape (circle, rectangle, triangle). The participants in this pattern are Shape, which is the Abstract Factory, and Circle, Rectangle and Triangle where these classes implement operations to create concrete objects. These are known as Concrete Factories.

Shape is an abstract class that declares operations common to the graphic elements that our editor will manipulate. Thus, we can extend the Shape class for each graphic element and provide our own implementation. A sample implementation of the Circle class is shown in Listing 3.

The same thing goes for the Triangle and Rectangle shapes and is shown in Listing 4.

Factory Method
Another pattern along the lines of Abstract Factory is the Factory Method Pattern. This pattern encapsulates the knowledge of which shapes to create. For instance, when the user of the graphics editor clicks on the "Draw" pull-down menu, the event will determine which shape the user has selected. Then, the Factory Method Pattern is the one responsible for what kind of shape to produce depending on the number of arguments supplied as parameters to the Factory Method. Based on this definition, we can define a Factory Method Pattern that is capable of generating different shapes depending on the number (and type) of arguments supplied. A sample implementation of a Factory Method is shown in Listing 5.

The class DrawShapeFactory is an example of a Factory Method pattern. This factory generates shapes of different types depending on the number of arguments supplied. Note that the Factory Method pattern can also be implemented differently by having an abstract class, creator of shapes, and a concrete class for creating each shape. Figure 3 shows the structure of the Factory Method pattern.

An example of how to use the Factory of shapes is as follows:

Suppose we number the shapes: circle = 1, triangle = 2 and rectangle = 3.

Now, in the method where we handle mouse events we can check whether the Shape Number is 1, 2 or 3 and based on that we can generate different shapes. The code snippet in Listing 6 shows an example of use.

The design patterns mentioned above are not all the design patterns that can be found in a graphics editor application. You may want to check the Design Patterns book, which lists 23 design patterns, and try to exploit more patterns from the above case study. Applicable patterns include the command pattern, builder pattern, composite pattern, iterator pattern and observer pattern.

Other Design Patterns
The Adapter Pattern
The Adapter pattern is an example of structural patterns which are concerned with how classes and objects are composed to form larger structures. The Adapter pattern converts the interface of a class into another interface clients expect. For instance, if we were to add another feature, such as drawing text, to the graphics editor, then because of incompatibility we would create a new subclass of Shape and call it TextShape, for instance, and then we can implement our drawing text feature. Since we would be using an existing class, Shape, but the interface does not include text, then we would need an Adapter, in this case TextShape.

The Adapter pattern, plus some other patterns such as Visitor and Iterator, can be implemented using a new class of Java APIs from JavaSoft known as Inner Classes. Inner classes (or nested classes) are part of JDK1.1.

As a side point, note that people in the object-oriented programming community seem to have different views on inner classes. I believe that inner classes are contrary to good object-oriented design for the following reasons:
1. The inner class has access to the implementation of the outer class and thus information hiding is violated.
2. The inner class is dependent on the outer class. Thus, the inner class is not reusable.

The Iterator Pattern
The Iterator pattern is an example of behavioral patterns which are concerned with algorithms and the assignment of responsibilities between objects. The Iterator pattern, also known as Cursor, provides a way to access the elements of an aggregate object (e.g., array or a list) sequentially without exposing its internal structure.

For example, the "for" statement is normally used in conventional programming as the preferred means for structuring iteration over arrays. The following code snippet shows an example where we visit each element of array[i] to find the sum of the elements of the array:

for (int i = 0; i sum += array[i];

In this example, the aggregate array[] is processed element by element. The "for" statement specifies a specific order of visitation which is controlled by the index, i, that is visibly modified. The Iterator pattern can help in capturing the next element in the array with a next() member function, for example. Thus, the code for summing an array would look like

for (int i = 0; i <= array.length; ++i) {
sum += array.next();

Note how the index, i, is decoupled from visitation. Since i is not required for array indexing within the loop, it is unlikely that i gets modified accidently within the "for" loop. A more concrete example in Java is the Vector class in the package java.util package. Elements in a Vector object can be accessed using the nextElement() method of java.util.Enumeration. An analogous example to the above would be

for (Enumeration e = vector.elements(); e.hasMoreElements();) {
sum += ((Integer) e.nextElement()).intValue();

Successive calls to the nextElement() method return successive elements of the aggregate. An object that implements the Enumeration interface generates a series of elements, one at a time. Thus, depending on the task to be performed, an easy way to implement an Iterator pattern is to implement the Enumeration interface which provides methods to iterate through the elements of a vector, the keys of (and the values in) a hashtable.

The Observer Pattern
The Observer pattern is an example of Behavioral Patterns. It is a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically. In the Observer pattern, there are subjects (or observables) that maintain some kind of state and observers that use the state represented by subjects. When a subject's state is changed, it informs one or more observers.

A variant of the Observer design pattern is supported by the Observer class in the java.util package. Each instance of this class maintains a set of observers that are notified whenever the Observable object changes in some significant way. An observer can be an object that implements interface Observer which is declared as

public interface Observer {
public void update(Observable o, Object arg);

The Observable class provides many useful methods, some of which include methods for adding and deleting observers, counting and notifying observers. The class is quite handy and easy to use.

One of the most significant areas of emergence in object-oriented technology is Design Patterns. Design Patterns represent solutions to problems that arise when developing software within a particular context. They facilitate reuse of prior successful software designs and improve key software quality factors, such as reuse, extensibility and performance. The material presented should give you a good introduction to design patterns and a start at implementing those design patterns in Java.

1. Gamma, E., Helm, R., Johnson, R., and Vlissides J., "Design Patterns: Elements of Object-Oriented Architecture", Addison-Wesley, Reading, MA, 1995.
2. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., "Object-Oriented Modeling and Design", Prentice Hall, Englewood Cliffs, NJ, 1991.
3. Booch, G., "Object-Oriented Analysis and Design with Applications", 2nd edition. Benjamin/Cummings Publishing Inc., 1995.

More Stories By Qusay Mahmoud

Qusay H. Mahmoud is a graduate student in Computer Science at the University of New Brunswick, Saint John, Canada. This term he is teaching a course on Multimedia and the Information Highway at the university. As part of his thesis, he developed a Web-based distributedcomputing system using Java.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER give you detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Miami Blockchain Event by FinTechEXPO also offers s...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
DXWorldEXPO LLC announced today that "Miami Blockchain Event by FinTechEXPO" has announced that its Call for Papers is now open. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Financial enterprises in New York City, London, Singapore, and other world financial capitals are embracing a new generation of smart, automated FinTech that eliminates many cumbersome, slow, and expe...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...