Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Java IoT

Java IoT: Article

Software Engineering in Startup Companies

Software Engineering in Startup Companies

The discussion about software engineering in the special environment of startup companies continues with a focus on the software life cycle model and the tracking of requirements.

Software Life Cycles
According to classical software engineering (SE), the development of software takes place in stages. Each stage has distinct outputs, which can be tested before you proceed to the next stage. They are:

  • Analysis: The problem and requirements for a solution are identified. Main output: Software requirements document.
  • Design: A software system is designed to fulfill the previously identified requirements. Main output: High- and low-level design documents.
  • Implementation/coding: The software system is implemented according to the previously defined design. Main output: Source code.
  • Testing: Individual components as well as the entire system are tested for fulfillment of the requirements identified during the analysis stage. Main output: Test results.

    Numerous models that describe the arrangement of the individual stages and the feedback among them have been suggested. These are called the software life cycle models. Some examples are the waterfall model, spiral model and incremental model, which are thoroughly discussed in SE literature (for example, Software Engineering: A Practitioner's Approach, 4th ed., by R. Pressman, McGraw-Hill).

    Consciously following a life cycle model lends structure to an otherwise amorphous effort. When you can identify the end of a stage, you know the time has come to perform specific tests, tests that enable you to find errors at an early stage in the development process. A major design flaw that can be fixed with just a stroke of a pen during the design stage may require major recoding if discovered when the software's almost finished. It's therefore important to perform these tests not just at the end of the development effort, but rather from the beginning and throughout the process. A lifecycle model facilitates this.

    By testing the output of a stage, you provide a well-understood and firm foundation for the team to build on. Once such a foundation is set, it's not supposed to change. In the ideal case all team members know what to achieve next, since this was set forth in the previous stage in a nonambiguous manner.

    In a startup company, however, the software life cycle is usually not well ordered. Markets develop swiftly, and requirements change even long after the analysis stage has supposedly been completed. Time and time again the engineering department finds itself under pressure to do whatever it takes to provide new features originally not planned.

    Is there a lifecycle model that not only works under these conditions but also helps to improve them? Of the many models developed, the incremental model seems to lend itself most closely to the way a startup company operates, but it requires a few modifications.

    As you can see in Figure 1, individual releases of the software are developed in a "pipelined" fashion. In theory this allows the rapid release of new features for your software. The incremental model works well for conventional companies operating in established markets, which use it to reduce the complexity of an individual release. Many of the features for the next releases are already known through market observation, feedback from customers of other products, established marketing channels and so forth. The more established companies also have the resources to maintain multiple parallel development streams.

    The startup reality renders this model impractical. Hiring qualified personnel is particularly difficult for a startup. It's unrealistic to assume that you'll hire a team of experienced analysts at the very beginning, followed first by designers and then by developers. In theory, software engineers should be able to handle all phases of product development. Unfortunately, the proliferation of this title throughout the industry has greatly reduced its value. Many people who call themselves software engineers really don't have a thorough software engineering education and often their experience is only in coding and maybe some design. I am in the same situation and am still learning. So while you can find many software engineers, those with the necessary skills, training and experience for all product-development stages are few and far between.

    The overall head count in your company is likely to be very low for an initial period, only to increase quite rapidly later on. Thus, in the beginning, each developer is also in the position of analyst as well as designer. Obviously, given the lack of personnel, you may not be able to do the analysis for the next release during the design phase of the first release. You have neither enough resources nor sufficient market feedback to begin the development cycle of the second release right away. After all, you haven't even released the first version of your product. Occasional feedback is passed on to you by marketing and sales, gathered from discussions with potential customers. But you won't get true customer feedback until you've shipped the first version to beta customers. Compared to established markets that provide a brightly illuminated playing field, a startup operates in the dark.

    During analysis - and design - you may have to perform research to prove technical concepts or ideas on which you plan to base your product. This may be done in the form of a prototype, which provides feedback for the analysis and design stage, adding complexity to the initial development stages.

    Quickly developing markets, initially missing customer feedback and lack of resources as well as analysis and design stages influenced by research lead me to suggest a modified incremental life-cycle model for startup companies.

    As Figure 2 indicates, analysis, research and design are intertwined for the first release. Analysis for the second release begins at a later stage when two conditions have been met:
    1. Requirements for the next release are available.
    2. Enough new developers have been hired to free the most senior developers to work with marketing on the analysis stage of the next release.

    The analysis for the second release starts after enough customer feedback has been collected to get a good feel for what the market wants. Without that feedback there's really no point in attempting to release yet another version of a product that may have had a lukewarm reception the first time around. The feedback is important and therefore needs to be properly analyzed and prioritized. You have to resist the temptation to stuff all requested features into the next release.

    Once you have a product on the market, you'll get a constant stream of requests. Thus, after the initial lag, you can start working on new releases earlier and earlier as staffing permits. The modified incremental life cycle model reflects this reality.

    Also note that the research component becomes less with each subsequent release. The reason is simply that you've established a core technology with the first release from which you'll continue to leverage. Yours is a commercial company, not a research lab. It's important for you not to have too much research in the critical path of your project as you progress, since research can't be scheduled properly.

    By keeping the first release small and simple, you'll receive market feedback sooner. Such early feedback is important to align the company and its product with the market. The longer it takes you to get feedback, the more time you spend developing "blind," in possibly the wrong direction. Provide the core functionality in the first release. The market will let you know in which direction to go. Potential customers are often willing to negotiate now if the fancy feature they want can be promised to them in an upcoming release. This lifecycle model sets you up for quick releases to satisfy customers without having to drastically change the requirements for an ongoing development cycle.

    Tracking Requirements
    As we discussed in the first part of this series (JDJ, Vol. 3, Issue 7), the analysis stage will not be as rigorous as classical SE would suggest. Many requirements are not known at all, or at least are not understood enough to formulate them in a quantifiable manner.

    Yet it's important not to drop a requirement accidentally through simple oversight. Consequently you have to track as many requirements as possible and as completely as possible. The traditional tool used for this task is the "traceability matrix."

    The matrix is essentially a table. The individual requirements are written from top to bottom and hence label the rows. The individual development stages (analysis, design, implementation, testing) are written from left to right and label the columns. Each cell of the table contains a record of where and how the requirement was addressed in that stage. For the development of product documentation, either a similar table should be created or documentation should become an additional column in the matrix.

    At the end of each development stage each requirement should be checked to see whether it has been addressed during that stage. A look at the table will reveal any omissions, which would be very costly to fix in later stages of product development. Such a matrix can save time and money.

    A traceability matrix will provide a company with an important benefit. Since the matrix records the trace of each requirement throughout the development stages, it shows the team which aspects of the product are affected by requirement changes. If the actual design and implementation takes place in a modular fashion, exhibiting low coupling and high cohesion (see the previously mentioned article), chances are that only those aspects of the product mentioned in that feature's matrix row need to be modified. As discussed earlier, flexibility and quick turnaround is a key point, especially for startup companies. The traceability matrix will facilitate such fast reaction times.

    Startups have two particular problems with maintaining a traceability matrix. First, as already mentioned, not all requirements are known and not all are quantified. The requirement itself may thus have to be formulated in a very unspecific manner, making it difficult to fill the matrix cells with precise information. In that case the matrix should still be maintained. Unquantified requirements should be marked and revisited as soon as more information becomes available. When that occurs the matrix will aid in identifying those parts of the product that need to be tested to see whether the modified requirement is still fulfilled.

    The second startup difficulty with traceability matrices is the work required to maintain them. On complex products a very detailed matrix can fill hundreds if not thousands of pages. Clearly, a compromise needs to be made here. For starters, in many cases it doesn't have to be one monolithic matrix covering the whole product. Even though a complete matrix is always recommended to achieve product completeness, a company might choose to have each team maintain its own matrices. The requirements within one subcomponent or project are identified and listed in a matrix. Maintaining such a smaller matrix is naturally a much less resource-intensive task. On the downside, overall product requirements may suddenly be listed in the matrices of several product teams. In that case some communication overhead is required to keep these matrices in sync.

    One might also choose to leave some of the requirements generally undefined and untraced. This is not at all ideal, but may be necessary due to a lack of resources. In that case the matrix should be limited to requirements that somehow have been deemed more critical than others. This method is risky since it again allows some requirements to be forgotten or not to be traceable if a change is required.

    A traceability matrix is a powerful tool to ensure product completeness and a quick trace of a feature's "footprint" within the product. Even though startup companies are likely to compromise on some aspects of the matrix, it's highly recommended to keep it as complete as possible. The payoffs are significant.

    Design, implementation and change control will be the topic of the next installment in this series.

  • More Stories By Juergen Brendel

    Juergen Brendel is a software architect at Resonate Inc.

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @ThingsExpo Stories
    Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
    Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
    Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
    Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
    In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
    BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
    No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
    Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
    In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
    "IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
    A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
    When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
    Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
    We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
    Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
    DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
    In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
    Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
    "Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
    The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...