Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Java IoT

Java IoT: Article

Software Engineering in Startup Companies

Software Engineering in Startup Companies

The discussion about software engineering in the special environment of startup companies continues with a focus on the software life cycle model and the tracking of requirements.

Software Life Cycles
According to classical software engineering (SE), the development of software takes place in stages. Each stage has distinct outputs, which can be tested before you proceed to the next stage. They are:

  • Analysis: The problem and requirements for a solution are identified. Main output: Software requirements document.
  • Design: A software system is designed to fulfill the previously identified requirements. Main output: High- and low-level design documents.
  • Implementation/coding: The software system is implemented according to the previously defined design. Main output: Source code.
  • Testing: Individual components as well as the entire system are tested for fulfillment of the requirements identified during the analysis stage. Main output: Test results.

    Numerous models that describe the arrangement of the individual stages and the feedback among them have been suggested. These are called the software life cycle models. Some examples are the waterfall model, spiral model and incremental model, which are thoroughly discussed in SE literature (for example, Software Engineering: A Practitioner's Approach, 4th ed., by R. Pressman, McGraw-Hill).

    Consciously following a life cycle model lends structure to an otherwise amorphous effort. When you can identify the end of a stage, you know the time has come to perform specific tests, tests that enable you to find errors at an early stage in the development process. A major design flaw that can be fixed with just a stroke of a pen during the design stage may require major recoding if discovered when the software's almost finished. It's therefore important to perform these tests not just at the end of the development effort, but rather from the beginning and throughout the process. A lifecycle model facilitates this.

    By testing the output of a stage, you provide a well-understood and firm foundation for the team to build on. Once such a foundation is set, it's not supposed to change. In the ideal case all team members know what to achieve next, since this was set forth in the previous stage in a nonambiguous manner.

    In a startup company, however, the software life cycle is usually not well ordered. Markets develop swiftly, and requirements change even long after the analysis stage has supposedly been completed. Time and time again the engineering department finds itself under pressure to do whatever it takes to provide new features originally not planned.

    Is there a lifecycle model that not only works under these conditions but also helps to improve them? Of the many models developed, the incremental model seems to lend itself most closely to the way a startup company operates, but it requires a few modifications.

    As you can see in Figure 1, individual releases of the software are developed in a "pipelined" fashion. In theory this allows the rapid release of new features for your software. The incremental model works well for conventional companies operating in established markets, which use it to reduce the complexity of an individual release. Many of the features for the next releases are already known through market observation, feedback from customers of other products, established marketing channels and so forth. The more established companies also have the resources to maintain multiple parallel development streams.

    The startup reality renders this model impractical. Hiring qualified personnel is particularly difficult for a startup. It's unrealistic to assume that you'll hire a team of experienced analysts at the very beginning, followed first by designers and then by developers. In theory, software engineers should be able to handle all phases of product development. Unfortunately, the proliferation of this title throughout the industry has greatly reduced its value. Many people who call themselves software engineers really don't have a thorough software engineering education and often their experience is only in coding and maybe some design. I am in the same situation and am still learning. So while you can find many software engineers, those with the necessary skills, training and experience for all product-development stages are few and far between.

    The overall head count in your company is likely to be very low for an initial period, only to increase quite rapidly later on. Thus, in the beginning, each developer is also in the position of analyst as well as designer. Obviously, given the lack of personnel, you may not be able to do the analysis for the next release during the design phase of the first release. You have neither enough resources nor sufficient market feedback to begin the development cycle of the second release right away. After all, you haven't even released the first version of your product. Occasional feedback is passed on to you by marketing and sales, gathered from discussions with potential customers. But you won't get true customer feedback until you've shipped the first version to beta customers. Compared to established markets that provide a brightly illuminated playing field, a startup operates in the dark.

    During analysis - and design - you may have to perform research to prove technical concepts or ideas on which you plan to base your product. This may be done in the form of a prototype, which provides feedback for the analysis and design stage, adding complexity to the initial development stages.

    Quickly developing markets, initially missing customer feedback and lack of resources as well as analysis and design stages influenced by research lead me to suggest a modified incremental life-cycle model for startup companies.

    As Figure 2 indicates, analysis, research and design are intertwined for the first release. Analysis for the second release begins at a later stage when two conditions have been met:
    1. Requirements for the next release are available.
    2. Enough new developers have been hired to free the most senior developers to work with marketing on the analysis stage of the next release.

    The analysis for the second release starts after enough customer feedback has been collected to get a good feel for what the market wants. Without that feedback there's really no point in attempting to release yet another version of a product that may have had a lukewarm reception the first time around. The feedback is important and therefore needs to be properly analyzed and prioritized. You have to resist the temptation to stuff all requested features into the next release.

    Once you have a product on the market, you'll get a constant stream of requests. Thus, after the initial lag, you can start working on new releases earlier and earlier as staffing permits. The modified incremental life cycle model reflects this reality.

    Also note that the research component becomes less with each subsequent release. The reason is simply that you've established a core technology with the first release from which you'll continue to leverage. Yours is a commercial company, not a research lab. It's important for you not to have too much research in the critical path of your project as you progress, since research can't be scheduled properly.

    By keeping the first release small and simple, you'll receive market feedback sooner. Such early feedback is important to align the company and its product with the market. The longer it takes you to get feedback, the more time you spend developing "blind," in possibly the wrong direction. Provide the core functionality in the first release. The market will let you know in which direction to go. Potential customers are often willing to negotiate now if the fancy feature they want can be promised to them in an upcoming release. This lifecycle model sets you up for quick releases to satisfy customers without having to drastically change the requirements for an ongoing development cycle.

    Tracking Requirements
    As we discussed in the first part of this series (JDJ, Vol. 3, Issue 7), the analysis stage will not be as rigorous as classical SE would suggest. Many requirements are not known at all, or at least are not understood enough to formulate them in a quantifiable manner.

    Yet it's important not to drop a requirement accidentally through simple oversight. Consequently you have to track as many requirements as possible and as completely as possible. The traditional tool used for this task is the "traceability matrix."

    The matrix is essentially a table. The individual requirements are written from top to bottom and hence label the rows. The individual development stages (analysis, design, implementation, testing) are written from left to right and label the columns. Each cell of the table contains a record of where and how the requirement was addressed in that stage. For the development of product documentation, either a similar table should be created or documentation should become an additional column in the matrix.

    At the end of each development stage each requirement should be checked to see whether it has been addressed during that stage. A look at the table will reveal any omissions, which would be very costly to fix in later stages of product development. Such a matrix can save time and money.

    A traceability matrix will provide a company with an important benefit. Since the matrix records the trace of each requirement throughout the development stages, it shows the team which aspects of the product are affected by requirement changes. If the actual design and implementation takes place in a modular fashion, exhibiting low coupling and high cohesion (see the previously mentioned article), chances are that only those aspects of the product mentioned in that feature's matrix row need to be modified. As discussed earlier, flexibility and quick turnaround is a key point, especially for startup companies. The traceability matrix will facilitate such fast reaction times.

    Startups have two particular problems with maintaining a traceability matrix. First, as already mentioned, not all requirements are known and not all are quantified. The requirement itself may thus have to be formulated in a very unspecific manner, making it difficult to fill the matrix cells with precise information. In that case the matrix should still be maintained. Unquantified requirements should be marked and revisited as soon as more information becomes available. When that occurs the matrix will aid in identifying those parts of the product that need to be tested to see whether the modified requirement is still fulfilled.

    The second startup difficulty with traceability matrices is the work required to maintain them. On complex products a very detailed matrix can fill hundreds if not thousands of pages. Clearly, a compromise needs to be made here. For starters, in many cases it doesn't have to be one monolithic matrix covering the whole product. Even though a complete matrix is always recommended to achieve product completeness, a company might choose to have each team maintain its own matrices. The requirements within one subcomponent or project are identified and listed in a matrix. Maintaining such a smaller matrix is naturally a much less resource-intensive task. On the downside, overall product requirements may suddenly be listed in the matrices of several product teams. In that case some communication overhead is required to keep these matrices in sync.

    One might also choose to leave some of the requirements generally undefined and untraced. This is not at all ideal, but may be necessary due to a lack of resources. In that case the matrix should be limited to requirements that somehow have been deemed more critical than others. This method is risky since it again allows some requirements to be forgotten or not to be traceable if a change is required.

    A traceability matrix is a powerful tool to ensure product completeness and a quick trace of a feature's "footprint" within the product. Even though startup companies are likely to compromise on some aspects of the matrix, it's highly recommended to keep it as complete as possible. The payoffs are significant.

    Design, implementation and change control will be the topic of the next installment in this series.

  • More Stories By Juergen Brendel

    Juergen Brendel is a software architect at Resonate Inc.

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    IoT & Smart Cities Stories
    Disruption, Innovation, Artificial Intelligence and Machine Learning, Leadership and Management hear these words all day every day... lofty goals but how do we make it real? Add to that, that simply put, people don't like change. But what if we could implement and utilize these enterprise tools in a fast and "Non-Disruptive" way, enabling us to glean insights about our business, identify and reduce exposure, risk and liability, and secure business continuity?
    DXWorldEXPO LLC announced today that Telecom Reseller has been named "Media Sponsor" of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
    Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
    In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the tec...
    To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
    DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
    Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true ...
    "Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
    We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...
    In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and G...