Welcome!

Weblogic Authors: Yeshim Deniz, Elizabeth White, Michael Meiner, Michael Bushong, Avi Rosenthal

Related Topics: Weblogic

Weblogic: Article

Clustering the BEA WebLogic Application

Clustering the BEA WebLogic Application

Mission-critical Web-based applications ­ customer self-service, distribution channel and supply chain management, online trading and banking ­ must be deployed on a cluster of servers in order to provide scalability and high availability. Scalability means that servers can be dynamically added or removed as needed to meet user demand, and that the overall load of requests is distributed among the servers so that resources remain fully utilized. High availability means that there is no "single point of failure" in either the system or the application, and that requests automatically failover from nonworking components to working components. Ideally, clustering should be transparent to applications: externally, the cluster should present a "single-system image." In addition to simplifying the task of application development, this allows off-the-shelf components to be deployed without modification.

The Java Enterprise APIs are rapidly becoming the primary programming model for Web-based applications. These APIs present two particularly challenging aspects for a clustering solution. First, they require integration with front-end Web servers, a fixed technology that is external to the cluster. Second, they require back-end management of objects, which by their nature have internal state. In contrast, conventional middleware such as TP monitors generally support only stateless RPC-based services. The hard part about managing state is that excessive communication between servers ­ to replicate objects for availability, for example ­ can interfere with scalability.

The BEA WebLogic Server provides an integrated implementation of the Java Enterprise APIs. A BEA WebLogic Cluster is a group of WebLogic servers that coordinate their actions to provide scalable, highly available services in a transparent manner. Since the WebLogic Server is written entirely in Java, WebLogic clusters are independent from the underlying hardware and operating system.

Thus a WebLogic cluster can be composed of, say, uniprocessor Intel machines running Microsoft NT, large-scale Sun multiprocessors running Solaris, and IBM AS/400s. In contrast, platform-specific clustering solutions require that every node run the same operating system. Of course, this allows them to use proprietary hardware, such as shared disks, multitailed disks and high-speed interconnects, for communication between servers. As an alternative, WebLogic uses highly optimized protocols based on new commodity technologies such as IP multicast.

This JDJ feature article presents an overview of BEA WebLogic Clusters.

Architecture of a BEA WebLogic Cluster
Figure 1 shows a high-level view of the architecture of a WebLogic cluster. BEA WebLogic Server provides software-based clustering to ensure scalability and high availability for Web and Java deployments. WebLogic clustering uniquely supports transparent replication, load balancing and failover for Web page generation (presentation logic) and Enterprise JavaBeans components (business logic).

The Web server front end supports dynamic construction of HTML pages using Java Servlets, Java HTML and Java Server Pages (JSP). The application-logic back end hosts objects and components using Java Remote Method Invocation (RMI), Enterprise Java-Beans (EJB) and the Java Naming and Directory Interface (JNDI). Other back-end Java Enterprise APIs, such as JDBC and JMS, are clustered using RMI, EJB and JNDI in much the same way as applications. The front and back ends are made up of rather different components that are clustered independently.

The Web Server Front End
A WebLogic cluster may be positioned behind standard Web servers such as Netscape Enterprise Server or Microsoft Internet Information Server (IIS). HTTP requests from Web clients, such as browsers, may be handled by these Web servers or the WebLogic front end. Requests for dynamically generated pages are proxied from the Web servers to WebLogic Servlet/JHTML/JSP engines in the front end. This is accomplished using Web server proxy plug-ins, e.g., defined according to the Netscape API (NSAPI) or the Microsoft Internet Server API (ISAPI).

The first line of clustering uses "DNS Round Robin" between the Web clients and the Web servers. DNS, the Internet's Domain Name Service, resolves a Web site's name to a list of IP addresses for the site's Web servers. Each time it gets a lookup request, DNS shuffles the list of addresses it returns. A Web client generally contacts the first server on the list provided by DNS. After some timeout period, or if this server fails, the client makes another DNS request and continues with a new server. This provides a simple form of load balancing and failover. It is possible to install more sophisticated IP-level load balancing and failover schemes that, for example, take into account Web server load, remove failed servers from the list returned by DNS and/or ensure that a client session is always handled by the same Web server (modulo failures).

The second line of clustering is for dynamically generated pages and goes between the Web servers and Servlet/JHTML/JSP engines in the front end of the cluster. The Web server proxy plug-ins perform load balancing and failover between the Servlet/JHTML/JSP engines. They use a session-level round-robin algorithm that is weighted by information about server load, which is piggybacked onto HTTP responses. If the WebLogic front end is configured to handle all HTTP requests, so that the standard Web servers are missing, then the situation looks even brighter.

Since the load balancing and failover algorithm is part of the server, it uses information about server load that is shared across the cluster as a matter of course. More important, this algorithm prefers the local Servlet/JHTML/JSP engine, unless the load is very unevenly distributed, so the request never has to leave the address space of the JVM.

When a Web client first contacts a cluster of Web servers, a session is created that lasts until some idle timeout expires. The Java standards include the notion of Servlet Session State, which is automatically retained on the servers during the session. As an example, Servlet Session State might be used to retain the contents of a shopping cart in a retail application. WebLogic clusters provide for highly available Servlet Session State using disk-based or in-memory replication (as described in more detail later).

The Application-Logic Back End
In the back end, a user- or system-level service is clustered by making an instance of an object (RMI) or component (EJB) that provides the service available on several different servers. An unclustered service is invoked by calling methods of a stub, which marshals the arguments and passes them to a particular remote object. A clustered service is invoked by calling methods of a smart stub, which can find the possible instances of the service and switch between them as needed for load balancing and failover. A variety of load balancing and failover algorithms are provided. It is possible to specify the particular algorithm to use with a given service at the time that service is deployed.

The default is a transaction-level round-robin algorithm that attempts to colocate all services invoked within the same transaction. This algorithm takes server load into account only if the stub appears on a server, since load information is expensive to obtain on a client.

When the Servlet/JHTML/JSP engine invokes a clustered back-end service, server-side load balancing occurs. A programmed client may invoke a clustered service directly, resulting in client-side load balancing, or it may have the service invoked on its behalf within the cluster.

There are two forms of clustered back-end services: stateless, which are instance-neutral; and stateful, which are instance-specific. These forms are treated quite differently within the cluster.

Stateless Services
A stateless service may not maintain state on behalf of an application, rather like a conventional RPC. It may of course access application state, but only by loading it temporarily into memory from a database, file system or other external medium. The EJB component model provides a natural way of implementing stateless services, namely, stateless session beans. Stateless services can also be implemented as RMI objects, but then it is up to the programmer to abide by this restriction.

The stateless service model has been widely advocated because it promotes scalability. There are two reasons for this. First, it obviates the need to back up state in the interests of availability, e.g., by replicating it within the cluster. Second, it allows load balancing to occur on every invocation of the service. This is because the service is "instance-neutral," that is, it doesn't matter which instance of the service is invoked.

When a stateless service is deployed in a WebLogic cluster, an instance of the service is created on each server that hosts it. A smart stub obtains references to these instances from the clusterwide naming service and switches between them as needed for load balancing and failover. Retries occur only if it can be guaranteed that a failed operation did not have side effects, e.g., because it never got started, it was transactional and an abort clearly occurred, or it was declared to be idempotent. If such cases do not apply, application code may contain explicit retries, perhaps after undoing side effects. Other than this, clustering is completely transparent to the application.

WebLogic clusters support an important special case of stateless services: service factories that create unclustered stateful service objects. The factory itself is stateless, so its stub can do load balancing and failover in the usual way. The service objects created by the factory are not clustered, however, and may therefore maintain state on behalf of an application. Since this state is not backed up, it will be lost if the object fails. Application code must therefore contain an explicit retry loop that creates a new instance of the object. EJB stateful session beans fit naturally into this model, since they are not persistent. This model may also be used with RMI objects.

Stateful Services
A stateful service may maintain state on behalf of an application. Such a service is "instance-specific" in the sense that each request is intended for a particular instance of the service. In a cluster, the state must be backed up in the interests of availability and can migrate in the interests of load balancing or availability. The cluster must therefore provide some kind of internal activation service that finds or creates service instances. If an instance can be concurrently used by several clients, as is the case for persistent components such as EJB entity beans that are accessed by a global key, then this service must ensure that conflicts do not arise.

One approach to state maintenance is to keep the state in a database or other persistent store. This is particularly suitable for persistent components, but may also be applied to transient objects. This approach scales like stateless services, and in fact differs only in that the latter requires explicit disk reads/writes. The activation service can avoid concurrency conflicts here simply by relying on underlying database locking. In a WebLogic cluster, EJB entity beans always use this approach (see Figure 2).

A related approach is to maintain a write-through cache, which keeps a current copy of the state in memory to avoid subsequent reads. This makes it considerably harder to avoid concurrency conflicts, and doing so can interfere with scalability. Databases are very good at caching objects in memory and doing the minimal disk I/O necessary to provide transactional protection. Application servers may not do much better for persistent components, and so such caching may be best applied to transient objects that are used by a single client.

A third approach is to keep a secondary copy in memory on another machine. This is of course more susceptible to failures and isn't suitable for persistent components. The hard part here is determining when and how the state of an object has changed. (Persistent components are generally just written out on transaction boundaries.) If the application programmer is made responsible, presumably through some proprietary API, then the feature becomes harder to use. If the system is made responsible, then the feature may be less efficient since unnecessarily large updates may be performed more often than necessary.

In a WebLogic cluster, stateful session beans and RMI objects can be configured to use in-memory replication. The replication system relies on the programmer to determine when and how the state of an object has changed. It then takes care of transporting an update delta from the primary copy to the secondary copy. Scalability comes from distributing the primaries and secondaries across the cluster. This is in contrast to replication systems that keep all of the objects on (1) a fixed-size subset of the servers or (2) all of the servers.

The Naming Service
Access to clustered services is obtained through a JNDI-compliant naming service, which is itself replicated across the cluster so there is no single point of failure. To offer an instance of a clustered service, a server advertises a provider at a particular node in the replicated naming tree. Each server in the cluster adds a stub for this provider to a service pool stored at the node in its copy of the tree. When a client looks up the service, it obtains a smart stub that knows about the pool at this node. When the stub needs to find a provider for load balancing or failover, it chooses from a list obtained from this pool.

Conclusion
The BEA WebLogic Server had evolved to meet the demands for scalability and high availability for mission-critical Web-based applications. BEA WebLogic Clusters provide scalable, highly available services in a transparent manner. The challenges of software-only clustering have been met by a combination of careful state management and highly optimized protocols based on new commodity technologies such as IP multicast. Initial measurements show that WebLogic clusters are both high performance and highly scalable. As an example, RMI benchmarks have shown that the throughput of a WebLogic cluster servicing 10,000 active clients scales linearly up to 10 servers, providing a maximum of 7,942 round-trip method invocations per second. In this benchmark, each server was on single-processor running Microsoft NT 4.0 with the JavaSoft JVM and the Symantec JIT. Similarly, tests at IBM have shown linear scaling up to 12 AS/400 processors. In general, experience with the BEA WebLogic Server has shown that Java and EJB do not pose limitations on performance as previously believed, and in fact can deliver the levels of performance, scalability and high availability required for mission-critical Web-based applications.

More Stories By Dean Jacobs

Dean Jacobs is an architect at WebXpress, a BEA company, where he is responsible for the WebLogic Server core and WebLogic clusters. He received his Ph.D. in computer science from Cornell University in 1985.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...